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ABSTRACT

Boeing Electron Dynamic Devices, Inc. (EDD) has
designed and fabricated a breadboard version of a 6-
kW power processing unit (PPU) for gridded ion
thrusters. This breadboard PPU will be integrated with
an engineering model 40-cm ion engine designed and
tested at GRC. The results of  our tests using resistive
loads are reported in this paper.  The PPU
demonstrated efficiencies to date are higher than 95%
for the beam supply and higher than 92% for the
discharge supply at full power. Overall PPU efficiency
is greater than 94% at full throttle settings.

INTRODUCTION

The Next Generation Ion (NGI) Engine Technology
Project is a technology development project within the
In-Space Propulsion Technology Program managed by
Marshall Space Flight Center (MSFC).  The primary
objective of NGI is to significantly increase
performance for primary propulsion to planetary bodies
by leveraging NASA’s very successful ion propulsion
program for low-thrust applications. To accomplish
this objective, NASA Headquarters selected Glenn
Research Center to develop NASA’s Evolutionary
Xenon Thruster (NEXT) under the NGI Engine
Technology NRA for ground demonstration and life
test with application to future missions. Issues of
interest are integration of ion propulsion elements and
critical interfaces, system lifetime, characterization of
system performance, and operation optimization. 

The NEXT program  will develop and verify an
Electric Propulsion System (EPS) that has performance
and interface characteristics and capabilities to be
considered by mission planners for use in the 2006
timeframe. In addition, NEXT will advance the

component technologies beyond the state of the art
(SOA) which is currently deemed to be NASA’s SEP
Technology Applications Readiness (NSTAR) EP
system flown on the Deep Space 1 (DS-1) mission. 

As part of the NEXT Program, EDD is under contract1

to NASA Glenn Research Center (GRC) for the design
and fabrication of a 6-kW power processing unit
(PPU).  We are currently completing Phase 1 of a two-
phase program, in which we have designed and
fabricated a breadboard unit. We will translate the
design into an engineering model in Phase 2. Both
PPUs will be integrated with an engineering model 40-
cm ion engine at the end of each phase.  This paper
reports on the results of the breadboard testing to date.

THE NEXT PROJECT POWER PROCESSING
UNIT

Figure 1 illustrates a typical ion thruster PPU.  The
PPU contains six (6) power supplies required to
operate the thruster.  The beam and accelerator supplies
provide high voltages to accelerate the ions.  The
discharge supply provides current to the discharge
cathode to ionize the xenon propellant.  The neutralizer
supply provides current to the neutralizer keeper to
ionize and provide a “plasma bridge” for electrons to
neutralize the ion beam.  The heater supplies run the
cathode heaters to raise the cathodes to emission
temperature for ignition.  Finally the PPU incorporates
a “housekeeping” supply for internal PPU activities
such as command and control, clock signals,
telemetries, fault protection, etc.

Relevant electrical specifications for the PPU are listed
in Table 1 along with the comparable values for
NSTAR.  The NEXT PPU runs from a generic high
voltage bus operating over the range of 80 to 160 V DC
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that furnishes power for all the  supplies except the
housekeeping supply.  The latter operates from a
generic low voltage  bus operating over the range of 22
to 34 VDC.

Each power supply output can be commanded on and
adjusted individually to a given setpoint.  Table 2 is the
formal throttle table for the NEXT engine consisting of
31 settings ranging from a total power of
approximately 1  to 6 kW.  This allows throttling the
40 cm ion engine between 50 and 209 mN thrust2.
This throttle capability allows the propulsion system to
match its output to the available solar array power,
which declines with distance from the Sun.

In an ion thruster PPU, the beam or screen supply
design  is critical to obtain high efficiency and low
mass since up to 92 percent of the power is processed
by this converter.  A modular approach consisting of
six 1.1 kW modules operating in parallel to supply
power to the engine was chosen for this design.  Five
modules would be sufficient to run the NEXT thruster,
but we elected to include a sixth module in the PPU to
allow for additional power processing capacity and
flexibility for future thruster development.  Additional
beam supply modules can be paralleled to further
increase the power capacity of the beam supply as
required.  These modules use a dual-bridge phase-
modulated / pulse-width-modulated topology for low
switching losses and performance over a wide
input/output voltage range. Efficiencies in excess of
96% were  previously measured for an individual
module3.  Measurements on the complete beam supply
demonstrated higher than 95% efficiency as shown in
Figure 2.  The breadboard beam modules weigh 2.45
kg, and a photograph of one of the modules is shown in
Figure 3. 

The other power supplies in the PPU use the same
topologies as in the NSTAR PPU4.  As shown in Table
1, some changes in the output specifications were
required to operate the NEXT engine.  Better
MOSFETs and new gate drive circuits were used to
improve efficiency and to simplify the design.  The
switching frequency was increased to 50 kHz to reduce
the mass of the power transformers and the input and
output filters.

The discharge supply is the other power converter in
the PPU that processes a considerable amount of
power.   This supply required a 71% increase in output
current and power compared to NSTAR. Figure 4
shows the efficiency of this supply as a function of
input voltage for several power levels.  As can be seen,
this converter runs as high as 92% efficiency.

With the exception of the beam supply modules, the
breadboard PPU was constructed with typical point-to-
point wiring on copper-clad perforated board.
Because the beam supply consists of multiple identical
modules,  printed wiring boards (PWBs) were designed
for use with leaded components.  The beam supply was
then constructed by fabricating a “card cage” to hold
the individual beam modules.  This approach allowed
the beam supply to be constructed and tested  in
parallel with the rest of the PPU.  The complete
breadboard PPU is shown in Figure 5:  The beam
supply is the top half of the PPU and the bottom half
contains all the other supplies including the
housekeeping and the input filter.

Gross overall PPU efficiency for various settings from
the throttle table are shown in Figure 6.  (Gross
efficiency is defined as total electrical power output
from all supplies ÷ total electrical power input from
both busses.)  As can be seen, efficiency at full power,
6.1 kW, (throttle table setting #30) is greater than 94%,
and at half power, 3.2 kW (throttle table setting #15), is
still greater than  92%.  Efficiency begins to fall off
below half power as the beam supply is not operating
in it’s most efficient mode.  We intend to address this
in Phase 2 by individually commanding the  modules
on and off.  In this fashion only as many modules as
are necessary to process the power will be operated.

Typical turn-on transients are shown in Figure 7.
Timing is adjusted such that the accelerator supply
turns on first in about 200 msec followed by the beam
supply which is ramped up over about 300 msec.
Complete turn on takes about 400 msec. A re-cycle
transient is shown in Figure 8.  During the recycle, the
discharge current is reduced to a pre-set “cut-back”
value (approximately 8 A in the figure), the supplies
are commanded on again, and the discharge current
slowly brought back up over a couple of seconds after
the beam supply comes on. 

As part of the Phase 1 effort the PPU will be integrated
with an engineering model 40-cm engine and a
breadboard propellant management system at GRC.
Performance will be verified for the complete throttle
table and input voltage range.  In addition, issues such
as turn-on transients and high-voltage recycles will be
investigated.

PLANS FOR PHASE 2

As mentioned previously, the NEXT PPU development
is a two-phased program.  The primary emphasis
during Phase 2 will be to fabricate an engineering
model (EM) PPU which will translate the existing
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design of the breadboard unit into a near flight-like
thermal and mechanical configuration.  Like all EDD
flight units, the EM PPU will be fabricated with
surface mount components.  We anticipate that this will
reduce the mass of individual beam modules to less
than 2 kg each.  The mass of the entire PPU is
estimated to be well below 24 kg.

In addition to packaging refinements,  some circuit
modifications and enhancements  will be incorporated
into the design of the EM PPU.   The most significant
will make each of the beam modules addressable such
that only as many as required will be operating for each
throttle table setting, as mentioned above.  This will
allow control over the amount of power processed by
each module to yield the maximum possible efficiency
over the full throttling range of the engine.   We antici-
pate that this will help increase PPU efficiency to
greater than 95% at high power and  greater than 90%
will be maintained over the full throttle table. 

CONCLUSION

The NEXT PPU has been designed to operate a 40 cm
ion engine.  It operates over a wide range of power bus
voltages (80 to 160 V) and delivers variable outputs to
allow thruster throttling from 1 kW to over 6 kW while
maintaining efficiencies of in excess of 90% in the
upper 2/3 of the throttle table.  At the highest power
outputs, demonstrated efficiency approaches 95%.
This is more than a full percentage point improvement
over the NSTAR PPU.  The anticipated mass of a flight
version of this design is less than 24 kg. This represents
a specific mass of 4 kg/kW, which is 33% less than the
NSTAR PPU.    This kind of efficiency and mass of the
PPU  will make the NEXT 6 kW ion propulsion system
very attractive for many planetary missions.
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DEFINITIONS, ACRONYMS, ABBREVIATIONS

DCIU Digital Command and Interface Unit

DS1 Deep Space One

EDD Boeing Electron Dynamic Devices,
Inc.

EM Engineering Model

Iacc Accelerator supply current

Ibeam Beam (screen) supply current

Idis Discharge supply current

Ink Neutralizer supply current

JPL Jet Propulsion Laboratory

GRC NASA Glenn Research Center

NASA National Aeronautics and Space
Administration

Neut Neutralizer

NSTAR NASA Solar-Electric-Propulsion
Technology Applications Readiness 

Pacc Accelerator supply power

Pbeam Beam (screen) supply power

Pdis Discharge supply power

Pnk Neutralizer supply power

PPU Power Processing Unit

Ptotal Total output power to thruster

PWB Printed wiring board

Vacc Accelerator supply voltage

Vbeam Beam (screen) supply voltage

Vdis Discharge supply voltage

Vnk Neutralizer supply voltage
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Figure 1. NEXT PPU block diagram showing internal power supplies and thruster interfaces
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Table 1.  The breadboard PPU component power supplies

Supply NEXT NSTAR
Beam (Screen)
   Output Voltage:
   Output Current:
   Regulation Mode:
   Ripple:

650 – 1800 VDC
1.2 – 3.1 ADC
Constant Voltage
< 5% of setpoint, regulated

650 – 1100 VDC
0.5 – 1.8 ADC
Constant Voltage
< 5% of setpoint, regulated

Accelerator
   Output Voltage:
   Output Current:
   Regulation Mode:
   Ripple:

-115 to -400 VDC
0 – 0.040 ADC, 0.4 A surge (100 ms)
Constant Voltage
< 5% of setpoint, regulated

-150 to -250 VDC
0 – 0.020 ADC, 0.2 A surge (100 ms)
Constant Voltage
< 5% of setpoint, regulated

Discharge
   Output Voltage:
   Output Current:
   Regulation Mode:
   Ripple:

15 – 35 VDC
4 – 24 ADC
Constant Current
< 5% of setpoint, regulated

15 – 35 VDC
4 – 14 ADC
Constant Current
< 5% of setpoint, regulated

Discharge Pulse Igniter
   Pulse Amplitude:
   Pulse Duration:
   Rate of Rise:
   Repetition Rate:

750 ± 100 V peak
10 µsec
>150 V/µsec
10 Hz min

650 V peak
10 µsec
150 V/µsec
10 Hz min

Discharge Heater
   Output Voltage:
   Output Current:
   Regulation Mode:
   Ripple:

3 – 24 VDC
3.5 – 8.5 ADC
Constant Current
< 5% of setpoint, regulated

3 – 12 VDC
3.5 – 8.5 ADC
Constant Current
< 5% of setpoint, regulated

Neutralizer
   Output Voltage:
   Output Current:
   Regulation Mode:
   Ripple:

8 – 32 VDC
1 – 3 ADC
Constant Current
< 5% of setpoint, regulated

8 – 32 VDC
1 – 2 ADC
Constant Current
< 5% of setpoint, regulated

Neutralizer Pulse Igniter
Pulse Amplitude:
   Pulse Duration:
   Rate of Rise:
   Repetition Rate:

750 ± 100 V peak
10 µsec
>150 V/µsec
10 Hz min

650 V peak
10 µsec
150 V/µsec
10 Hz min

Neutralizer Heater
   Output Voltage:
   Output Current:
   Regulation Mode:
   Ripple:

3 – 12 VDC
3.5 – 8.5 ADC
Constant Current
< 5% of setpoint, regulated

3 – 12 VDC
3.5 – 8.5 ADC
Constant Current
< 5% of setpoint, regulated
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Table 2.  NEXT Throttle Table

Throttle Vbeam Ibeam Pbeam Vacc Iacc Pacc Vdis Idis Pdis Vnk Ink Pnk Ptotal
Point V A W -V mA V V A W V A W W

30 1800 3.11 5599 250 10.5 2.6 24 17.4 417 12 3 36 6055
29 1800 2.71 4877 250 9.2 2.3 24 15.8 380 12 3 36 5295
28 1800 2.36 4244 250 8.0 2.0 24 14.4 346 12 3 36 4628
27 1800 2.01 3612 250 6.8 1.7 24 12.9 310 12 3 36 3960
26 1800 1.61 2890 250 5.4 1.4 24 11.1 266 12 3 36 3193
25 1800 1.20 2167 250 4.1 1.0 26 8.4 219 12 3 36 2423
24 1567 3.11 4874 235 10.5 2.5 24 17.4 417 12 3 36 5330
23 1567 2.71 4245 235 9.2 2.2 24 15.8 380 12 3 36 4663
22 1567 2.36 3695 235 8.0 1.9 24 14.4 346 12 3 36 4078
21 1567 2.01 3145 235 6.8 1.6 24 12.9 310 12 3 36 3492
20 1567 1.61 2516 235 5.4 1.3 24 11.1 266 12 3 36 2819
19 1567 1.20 1887 235 4.1 1.0 26 8.4 219 12 3 36 2142
18 1396 3.11 4342 220 10.5 2.3 24 17.4 417 12 3 36 4798
17 1396 2.71 3782 220 9.2 2.0 24 15.8 380 12 3 36 4200
16 1396 2.36 3292 220 8.0 1.8 24 14.4 346 12 3 36 3675
15 1396 2.01 2801 220 6.8 1.5 24 12.9 310 12 3 36 3149
14 1396 1.61 2241 220 5.4 1.2 24 11.1 266 12 3 36 2544
13 1396 1.20 1681 220 4.1 0.9 26 8.4 219 12 3 36 1936
12 1179 3.11 3667 200 10.5 2.1 24 17.4 417 12 3 36 4123
11 1179 2.71 3194 200 9.2 1.8 24 15.8 380 12 3 36 3612
10 1179 2.36 2780 200 8.0 1.6 24 14.4 346 12 3 36 3163
9 1179 2.01 2366 200 6.8 1.4 24 12.9 310 12 3 36 2713
8 1179 1.61 1893 200 5.4 1.1 24 11.1 266 12 3 36 2196
7 1179 1.20 1420 200 4.1 0.8 26 8.4 219 12 3 36 1675
6 1021 2.71 2766 175 9.2 1.6 24 15.8 380 12 3 36 3184
5 1021 2.36 2408 175 8.0 1.4 24 14.4 346 12 3 36 2791
4 1021 2.01 2049 175 6.8 1.2 24 12.9 310 12 3 36 2396
3 1021 1.61 1639 175 5.4 0.9 24 11.1 266 12 3 36 1942
2 1021 1.20 1229 175 4.1 0.7 26 8.4 219 12 3 36 1485
1 850 1.20 1023 125 4.1 0.5 26 8.4 219 12 3 36 1279
0 679 1.20 818 115 4.1 0.5 26 8.4 219 12 3 36 1073
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Figure 2.  Beam supply efficiency as a function of input voltage at two output power levels

Figure 3.  Individual beam supply module
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Figure 4.  Discharge supply efficiency as a function of input voltage at various output power levels

Figure 5.  NEXT breadboard PPU.  The top half is the beam supply.
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Figure 6.  Gross overall PPU efficiency as a function of input voltage at various throttle settings

Figure 7.  Turn-on transients
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Figure 8.  Re-cycle transients
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